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The problem of finding the regions of instability of a system with a periodically varying moment of inertia is considered. An 
equation is derived which describes small torsional oscillations of a system with periodic coefficients, which depend on four constant 
parameters, including damping. A method of investigating stability based on an analysis of the behaviour of Floquet multipliers 
is described. Analytical expressions are obtained for the regions of instability (parametric resonance) in parameter space. Numerical 
examples are given. �9 2006 Elsevier Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider small torsional oscillations of a vertical elastic rod with a horizontal disc with a flange rigidly 
attached to it (Fig. 1). The ends of a rigid spoke are connected to the disc, and two symmetrically situated 
point masses m can slide along this spoke. We will assume that these masses oscillate along the radius 
of the disc, symmetrically about the axis, as given by the periodic relation 

r = r o + a t p ( f 2 t ) ,  ~{p(x )dx  = 0 (1.1) 

o 

where r0 is the mean distance from the mass to the elastic axis of the disc, a and D are the amplitude 
and frequency of the excitation, respectively, and tp(x) is a smooth periodic function of period 2n with 
zero mean value. The moment of inertia of the system (the disc with the two masses) is then 

J ( t )  = Jo + 2m[r0  + a t p ( ~ t ) ]  2 (1.2) 

where J0 is the moment of inertia of the disc. The equation of small torsional oscillations of the system 
has the form 

(J(t)O)" + 7 0  + cO = 0 (1.3) 

where 0 is the angle of torsion, c is the stiffness of the rod and a dot denotes a derivative with respect 
to time t. The amplitude a and the damping factor ), are assumed to be small. 

The problem is to find the values of the parameters for which the trivial equilibrium position 0 = 0 
becomes unstable. This problem was formulated previously in [1] without damping and with a harmonic 
excitation. 
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Fig. 1 

We will introduce the following dimensionless quantities and parameters 

"c = •t ,  ~ = a 2mr2~ ~Io = Jo + 2mr~ 
ro '  = 

= y co = 1 ~c__, ~l(t)O 
  -00c'  47oo x,--0, 

~l(t) = J( t )  
Jo 

(1.4) 

The Eq. (1.3) can be written in the form of a system of first-order equations 

d x  l = 1 dx2 2 ~ )  (1.5) 
dx )(x) x2, d'x- = - co xl - x2 

with the relation 

)(x) = 1 + 2eq(p(x) + e2q~02(x) (1.6) 

In the new variables the assumption that the periodic function (p(x) is smooth can be relaxed and one 
can merely assume that it is piecewise-continuous. 

The right-hand sides of Eqs (1.5) are linear functions of the vector x = (Xl, x2), periodic in "t with 
period 2n. Equations (1.5) and (1.6) depend explicitly on four independent parameters ~, co, e and 13, 
of which the last two are small 

0<co, 0 < q < l ,  0 < e , ~  1, 0 < l ] , ~ l  (1.7) 

The problem is to find the regions of instability (parametric resonance) of the trivial solution x = 0 
in the three-dimensional space p = (co, e, 13) for a fixed value of the parameter q. 

2. D E R I V A T I V E S  OF THE M O N O D R O M Y  M A T R I X  W I T H  R E S P E C T  TO 
THE P A R A M E T E R S  

Consider the system of linear equations 

= G x  (2.1)  

where G = G(t, O) is an N • N square matrix, which depends smoothly on the vector of real parameters 
P = (Pl ,  P2 . . . .  Pn) and is a continuous periodic function of time with period T. 

The fundamental matrix X(t) of system (2.1) is found from the matrix differential equation with initial 
condition 
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X = G X ,  X(O) = I (2 .2)  

where I is the identity matrix and is called the matriciant. The monodromy (Floquet) matrix is defined 
by the equality F = X(T) [2, 3]. 

To investigate the stability of linear system (2.1) we use Floquet's theory, according to which a linear 
system with periodic coefficients is stable if all the eigenvalues p (multipliers) of the monodromy matrix 
F have a modulus of less than unity, and unstable if at least one multiplier has a modulus greater than 
unity. 

Suppose that for a certain n-dimensional vector of the parameter P0 we know the monodromy matrix 
F0 = F(p0). We give the parameter vector an increment in the form p = P0 + Ap. As a consequence 
of this, the matrix G, and consequently also X(t), obtained increments which lead to a change in the 
monodromy matrix F. Expressions for the first and second derivatives of the monodromy matrix with 
respect to the parameters in the form of integrals over a period were obtained in [4, 5] 

T 

~F _ FoiHk(x)dx 

0 

~Pi~PJ 0 " 0  

dx + IHj(x Hi(~)d d'c 
0 " 0  / 

(2.3) 

where 

-1 ~ G  
Hk(x) = Xo (x)~-~pk(Po, x)Xo(x), Hij(x) -- Xol("c) (Po, ~)Xo(X); i, j, k = 1 . . . . .  n 

vt.'ivt- j 

The zero subscript denotes that the corresponding quantity is taken for p = P0. 
Note that to obtain the derivatives (2.3) it is only necessary to know the matricant X0(t) and the 

derivatives of the matrix G with respect to the parameters, calculated for p = P0. Using the derivatives 
(2.3), we can write increment of the monodromy matrix in the form 

n OF 1 n ~2 F 

F(p o + Ap) = F o + k s I Opk~---Apk + 2i, ]~7- l ~176 +"" (2.4) 

A knowledge of the derivatives of the monodromy matrix enables us to obtain the values of this matrix 
in the neighbourhood of the point P0 and, consequently, to estimate the behaviour of the multipliers 
(the eigenvalues of the monodromy matrix F), responsible for the stability of system (2.1) when the 
parameters change. 

3. R E G I O N S  OF I N S T A B I L I T Y  

We will write system (1.5) in the form (2.1) with the matrix 

o:ll 0 [ 1 + 2eqcp('t) + E2~lp2('l~)] -1 

--0.) 2 --1~(.0[ 1 + 2egcp('t) + E2~(p2('lT)] -1 
(3.1) 

which depends explicitly on four parameters and the periodic function ~p(x). We will consider the 
behaviour of the multipliers in the neighbourhood of the point P0 = (m, 0, 0) for an arbitrary value of 
the parameter ~ ~ (0, 1). 

Substituting the values e = 0 and [~ = 0 into relations (2.1) and (3.1), from Eqs (2.2) we obtain the 
matriciant and the matrix inverse to it 

X0(t ) = -1 . , l(t ) smmt (3.2) coso~t m slntot Xo = c o s o l t  -(d0 -1 " 

-co sin cot cos cot 00 sin cot cos cot 
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Hence, when e = 0 and [3 = 0 the monodromy matrix has the form 

F 0 = X0(2r0 (3.3) 

The eigenvalues of this matrix (the multipliers) are 

Pl,2 = cos2~to_+ isin2nto (3.4) 

For all values of co r k/2 (k = 1, 2, ...) the multipliers are complex-conjugate quantities, and they lie 
on the unit circle (stability). For a small change in the parameters co, e, [3 in the neighbourhood of the 
point P0 = (to, 0, 0), co ~ k/2 (k = 1, 2 . . . .  ), by virtue of continuity, the multipliers remain complex- 
conjugate quantities. Then, for the multipliers we have a quadratic equation of the form 

2 
p + A p + B  = 0 (3.5) 

The free term, according to Liouville's formula [2] using equality (3.1), is described by the expression 

B = exp trGdt = exp( -2~ to (1  +o(e2))) (3.6) 

\ 0  / 

Since by Vieta's theorem, from relations (3.5) and (3.6) when [~ > 0 and sufficiently small e we have 

P I P 2  = B< 1 (3.7) 

then for the complex-conjugate multipliers it follows from inequality (3.7) that I Pl, 21 < 1. Hence, a 
small change in the parameters co, 13 and e, with ~ > 0, in the neighbourhood of the point P0 = (to, 0, 0), 
to ~ k/2, shifts the multipliers inside the unit circle, which indicates asymptotic stability. 

Consequently, instability (parametric resonance) can occur only in the neighbourhood of the points 

P 0 : e  = 0, 13 = 0, to = k12, k = 1,2 . . . .  (3.8) 

in which the multipliers are double. 
To find the regions of parametric resonance we expand the monodromy matrix F in the neighbourhood 

of the points P0 in a Taylor series in the parameters e, ~ and Ato = to - k/2 

bF ~ F .  b F .  
F(p) = F(Po) + ~-~e + ~--~ p + ~-~ato + ... (3.9) 

From formulae (2.3) using relations (2.1) and (3.1)-(3.3) we can calculate the values of the derivatives 
0FDe, 0F/O~ and 0F/Oto, for p = P0. As a result of expansion (3.9) we have, apart from terms of the 
first order of smallness. 

The constants 

F(p) = cosrtk 1 + (~bkkeg-n~k) /2  4k-lrcAto-xakeq 

- k n A t o -  ~akk2e~14 1 - (ltbkke ~ + n~k)/2 

2~ 2n 

1 ~ tp(x)coskxdx, b k l~tp(x)s inkxdx,  a k =  ~ = 

o o 

(3.10) 

k = 1, 2 . . . .  (3.11) 

are the Fourier coefficients of the function <p(x). 
For the matrix (3.10) we obtain approximate values of the multipliers 

a~k2+ 2 (3.12) 
r k = b k 

2 2 2 2  2 
Pl,2 = (--l)k( 1 -~[~k/2)-+~,4~; D = rkk e ~ /4- (2Ato)  , 

The system is unstable if at least one of the multipliers is larger in modulus than unity [2, 3]. When 
< 0 this condition is satisfied and the system is unstable. But when 13 > 0 this condition is only satisfied 

when ~ > ~k/2. Hence, taking relations (3.12) into account, we obtain that the region of instability 
(parametric resonance) lies inside half the cone 
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/ ~/2 
1 �9 

to 0 k/2 to 

Fig. 2 Fig. 3 

0 k/2 

Fig. 4 

to 
1- 

4 ( 2 0 3 / k  1)2 4- [32 2 2 2 - <rke  ~ ,  13->0 (3.13) 

connected with the half-space 13 < 0 (Fig. 2). 
Hence, in particular, it follows that the kth region of parametric resonance depends only on the kth 

coefficients of the Fourier periodic excitation function. Note that formulae (3.13) are the first 
approximations for the regions of instability. When ag = 0 and b k = 0 the quantity rg = 0, and the first- 
order approximations (3.13) degenerate into a straight line [3 = 0, 03 = k/2. In this case, in order to 
obtain the region of parametric resonance more accurately one must use higher-order approximations. 
This may also indicate that the corresponding region of parametric resonance is empty. 

Putting [3 = 0 in inequality (3.13) we obtain the regions of parametric resonance when there is no 
damping 

rkkq o3-k/2 rkkq 
-'-4-- < ~ e  < - - 4  (3.14) 

The section of the cone (3.13) by the plane 13 = const, 13 --- 0 gives the regions of parametric resonance 
bounded by a hyperbola (Fig. 3), and its asymptotes are found from inequalities (3.14). When there 
is damping ([3 > 0) the minimum amplitude of the excitation of resonance, according to relation 
(3.13), is 

Emin = ~/rks (3.15) 

We will analyse the change in the regions of parametric resonance when the resonance number k 
increases. We know that, if the periodic function ~p(z) is continuous together with its sth order derivatives, 
then for the Fourier coefficients ak and bk we have the relations akk s§ ~ 0 and bk ks+l ~ 0 when 
k ~ ~ .  Hence, for continuously differentiable functions, the quantities krk approach zero when 
k ~ ~ .  This means that the cone (3.13) shrinks as k increases. Hence it also follows that for fixed [3 
the minimum amplitude of excitation of resonance (3.15) increases without limit as k increases. This 
is explained by the fact that it is easier to observe resonance at low values ofk  = 1, 2, whereas to achieve 
resonance at higher values of k larger excitation amplitudes are required. 

The section of the region (3.13) by the plane e = const is half an ellipse with semiaxes I03 - k/21 = 
rkkec.J4 and 13 = rke~ (Fig. 4). Note that as the damping coefficient [3 increases the width of the region 
of parametric resonance shrinks with respect to the frequency 03 and when [3 > r~e~ it disappears. 

It follows from relation (3.13) and the above analysis that the regions of parametric resonance broaden 
as the parameter ~ ~ (0, 1) increases. According to relations (1.4) this means that, when the moment 
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of inertia of the masses increases and the moment  of inertia of the disc remains unchanged, the regions 
of parametric resonance broaden. 

Using relations (1.4) and (3.8) we find that parametric resonance occurs in the neighbourhood of 
the dimensional critical frequencies 

2o0 IJ c f~cr = k ' k = 1,2 . . . .  ; ~0 = (3.16) 
o + 2 m r 2  

Note that ~0 is the natural frequency of torsional oscillations of a disc with two fixed masses m, situated 
at a distance r0 from the axis of rotation. Using relations (1.4) and (3.16) the regions of parametric 
resonance (3.13) can be written in dimensional variables. 

As a numerical example we will consider the periodic function q0(z) = cosx and the parameter  
= 1/2. In this case, for the first resonance region k = 1 we calculate a 1 = rl = 1 and bl = 0 using 

expressions (3.11). Hence, according to relations (1.4) and (3.13) we obtain the following explicit 
expression for the first region of parametric resonance in dimensional variables 

(mo )2 r a 2 
4 f~ - l  + 2 <7-5  (3.17) 

(Jo + 2mro)c 4ro 

Note that other  regions of parametric resonance are degenerate, since ak = bk  = r/, = 0 (k = 2, 3, 
4 . . . .  ) .  

We will consider, as another example, the continuously differentiable 2x-periodic function 

= I x ( n - x ) ,  o<_x<_n 

9(x) [ ( n -  x)(27t - x), n < x < 2re (3.18) 

consisting of parabolas of positive and negative curvature. We have for the Fourier coefficients of this 
function 

8 
a k = 0, b k = r k = - -  k = 1,3,5, ..; a k = b k = r k = O, k = 2,4,6, (3.19) 

gk 3 . . . . .  

Hence, by formula (3.13), for the odd resonances we obtain the relation 

2 

n2k6, k =  1,3,5 .... (3.20) 

which shows how rapidly the regions of parametric resonance shrink as the number k increases, while 
the even regions of parametric resonance are degenerate. 

The above method of analysing the regions of parametric resonance, which uses the derivatives of 
the monodromy matrix with respect to the parameters, is a simpler and more effective method compared 
with methods based on searching for periodic solutions at the boundaries of the regions of stability [3]. 
Moreover, it gives relations for the regions of stability and not just for the boundaries of stability, and 
gives the multipliers which describe the nature of unstable motion. 
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